
© Sarah Diesburg, J. Ben Schafer, and Briana B. Morrison | ACM 2025. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in ACM SIGCSE Conference (SIGCSE 2025), https://doi.org/10.1145/3641554.3701882.

Curriculum for a Comprehensive Statewide In-Service CS
Teacher Training Program

Sarah Diesburg
 Computer Science

 University of Northern Iowa
 Cedar Falls, Iowa, USA

 sarah.diesburg@uni.edu

J. Ben Schafer
Computer Science

University of Northern Iowa
 Cedar Falls, Iowa, USA
 ben.schafer@uni.edu

Briana B. Morrison
 Computer Science

 University of Virginia
 Charlottesville, Virginia, USA

 bbmorrison@virginia.edu

ABSTRACT
Training teachers to teach high-quality computer science courses
is an important step towards increasing participation in computer
science. To meet this need, our Research Practitioner Partnership
(RPP) was formed with the primary goal of creating a
comprehensive, graduate-level program to train in-service CS
teachers with little to no prior CS coursework. Since its formation,
the RPP has iteratively designed, implemented, and evaluated a
five-course program to improve participants’ knowledge of
computer science content and pedagogy while allowing them to
earn the state’s grades 5-12 computer science endorsement. Our
program has successfully scaled from a single-site pilot to a truly
statewide, multi-site program, emphasizing educator-based,
standards-based, and cohort-based instruction. Currently, the RPP
serves 250 in-service participants.

In this paper, we explain the curriculum development process and
delivery model for our program. In doing so, we discuss how the
program was intentionally developed from the ground up by
designing course offerings that align with the CSTA student and
educator standards. We make a case for peer-based Communities
of Practice (CoPs) as an essential element of such programs.
Finally, we discuss feedback and lessons learned during our
ongoing curriculum development process with the hope that these
lessons may be valuable for similar organizations looking to create
a comparable, comprehensive, CS teacher training program.

CCS CONCEPTS
• Social and professional topics~Professional
topics~Computing education~Computing education
programs •Social and professional topics~Professional
topics~Computing education~Model curricula

KEYWORDS
K-12 Education, Teacher Preparation, Curriculum Development,
Educator Standards

ACM Reference format:

Sarah Diesburg, Ben Schafer, and Briana Morrison. 2025. Curriculum for a
Comprehensive Statewide In-Service CS Teacher Training Program. In
Proceedings of ACM SIGCSE Conference (SIGCSE 2025). ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3641554.3701882

1 Introduction and Background
The University of Northern Iowa Partnership for CS Teacher
Preparation is a Research Practitioner Partnership (RPP) [6]
founded in 2017 to help in-service teachers become qualified to
provide high-quality computer science courses and, in the
process, add the grades 5-12 Computer Science endorsement to
their teaching license. To meet state requirements, a five-course
sequence of graduate level coursework [27] was iteratively
created and piloted with the assistance of a 2018 small-sized NSF
CS4All:RPP grant (#1738784). Between 2018 and 2021, three
cohorts of educators (a total of 49 participants) completed the
program using a combination of online instruction and local, face-
to-face Communities of Practice (CoP). In 2023, the partnership
expanded its membership to a truly statewide program to provide
equitable access to course offerings. This effort was supported by
a medium-sized NSF CS4All:RPP grant (#2219497) [8]. The
partnership is working with two additional cohorts of participants
at 9 locations with 94 participants starting the 18-month program
in summer of 2023 and 157 starting in summer of 2024.

This paper focuses on the curriculum used in our program. In
it we discuss the design principles and delivery model of the
program to put the curriculum into context. We discuss our five-
course offerings, explaining the structure, learning objectives, and
rationale of each. We report mappings to current CSTA student
and teacher standards. We offer teacher quotes as evidence of
efficacy of the program design as part of our ongoing evaluation.
Lastly, we discuss lessons learned with the goal of providing
guidance for similar programs.

2 Curricular Design Process
As we launched our RPP, we conducted a literature review for
publications discussing similar programs [10, 13, 14, 19, 31].
However, these papers focus on mode of delivery. In this paper,
we focus on our curriculum and limit discussions of the delivery
model to only those aspects that impact curricular choices.

SIGCSE 2025, Pittsburgh, PA, USA. Diesburg, Schafer, and Morrison

In designing our curriculum, three guiding principles ground
all decisions. Specifically, our program is:

1. Educator-based: Our audience consists of trained educators
and our program is designed with objectives and learning
activities appropriate for this audience.

2. Standards-based: Our program is designed around specific
outcomes and standards from the CSTA K-12 Standards for
students and the CSTA Standards for CS Teachers.

3. Peer/cohort-based: Our program is designed with an
emphasis on participant collaboration and developing active
communities of practice.

We began our design process with the recognition that our
program needed to be educator-based. Participants are in-
service teachers who are well-qualified to teach but, for the most
part, lack significant training in computer science. In most cases,
the participants have been asked (or told) by their school districts
to teach a computer science course to meet the state’s K-12 CS
requirements. At best, participants have received minimal
Professional Development (somewhere between a day and a
week) focusing on a specific CS curriculum they will use in their
classroom. But frequently, they have received no training at all
and were just told to “make it happen.” To become well-qualified
CS teachers, these participants need to receive a breadth of
general knowledge with appropriate depth in particular topics.
The focus of that knowledge should be uniquely different from
that taught in similar courses to undergraduate compute science
majors. Given this audience and focus, our RPP made the decision
to build a program from all new courses rather than piecing it
together from existing, majors-based courses.

From there, we set out to design our curriculum to be
standards-based. Using the “Understanding by Design” (UBD)
process [3, 16] we began by identifying the learning outcomes and
the standards to which those outcomes are connected. Doing so
grounds all decisions about course structure and delivery to
agreed upon outcomes/standards. We use the CSTA Standards for
K-12 students (in particular, grade bands 2 and 3A) [34] and the
CSTA Standards for CS Teachers [35]. A deeper discussion of this
process is discussed in section 4 of this paper.

Teaching to full-time teachers requires acknowledging and
working around participant time-constraints. To address this, we
elected to create courses which are, for the most part,
asynchronous and online. Participants are provided a schedule of
weekly readings, online videos, reflections, and practice problems.
They are largely free to complete these activities around their
schedule. Some courses include elements of online, small group
collaboration such as completing discussion questions or paired
programming assignments. The instructional team works with
participants to create groups who can identify time(s) to
collaborate each week.

Despite these online collaborations, the RPP was concerned
about participant feelings of isolation and inadequacy. We decided
early on that we wanted to provide participants with
opportunities to develop a sense of belonging and combat the very
real and significant hurdle presented by Imposter Syndrome [24].

To address this issue, we chose to make our program
peer/cohort-based through the inclusion of regular Community
of Practice (CoP) events. CoPs are defined as a group of people
who “share a concern or a passion for something they do and learn
how to do it better as they interact regularly.”[30] These events
help participants not only generate a sense of belonging but also
create a peer-based support network for the duration of the
program and beyond [18, 29, 30]. Within our program, each of the
five courses includes three, half-day, CoP events (approximately
monthly) where participants meet face-to-face. These events are
well-suited to meet curriculum objectives that aren’t easily
conducted in an online environment, such as:

 Building community and better understanding peers
 Connecting course content to issues of teaching and learning

at various grade bands in the K-12 pathway
 Debating social and ethical issues relating to course content
 Participating in hands-on activities to both better understand

course content and to experience these teaching methods
 Practicing teaching techniques
 Interacting to complete group projects
 Collaborating with peers to create shared resources

In early offerings of the program, these CoP events were
conducted by university faculty at a single location – either on
campus at or at an off-campus site more conveniently located in
the state to that cohort’s participants. Our current statewide
model engages regional partners to conduct these CoP events at
multiple sites around the state (Figure 1). University faculty
continue as the primary leaders of instruction for classes but are
joined on the instructional team by facilitators who lead the face-
to-face CoP sessions at one of nine regional partner sites.

Figure 1: Regional Partnerships facilitating CoP events.

3 Curriculum and Course Outcomes
New cohorts of our program begin each summer, and participants
take one course at a time completing the program, and the
accompanying endorsement, in December of the following year.
In this section, we provide an overview of our program and the
learning outcomes for each of the individual courses. Additional
information is available at https://csed-uni.github.io.

Curriculum for a Comprehensive Statewide In-Service CS Teacher Training Program SIGCSE 2025, Pittsburgh, PA, USA.

3.1 Foundational Concepts of CS
FCCS is the first course in the program and is taught as an 8-week
summer course. FCCS provides knowledge of the breadth of
computing, excluding programming. The textbook used is
“Computer Science: An Overview” by Brookshear and Brylow [4],
supplemented with faculty-produced instructional videos and a
variety of online resources.

Table 1: FCCS Outcomes

Course-Wide Outcomes
0.1 Analyze and discuss common social and ethical considerations

of real-world applications.
Module 1: Data Representation
1.1 Recognize that the fundamental building blocks of computers

are logic gates and, given their inputs, be able to determine
the output of a simple collection of gates.

1.2 Apply an understanding of how computers represent various
types of values (e.g. bits, bytes, binary, hexadecimal,
encodings, storage units).

1.3 Recognize common errors (e.g. overflow and truncation).
Module 2: Hardware, Data Manipulation, and OS
2.1 Apply understanding of a CPU's instruction set and the

instruction cycle to various scenarios.
2.2 Identify hardware components of a computer and describe

their relationship and interaction.
2.3 Explain the process whereby a computer's CPU can be

connected to or communicate with a variety of external
(peripheral) devices.

2.4 Apply an understanding of computer memory/storage to a
variety of situations.

2.5 Apply understanding of the role and functioning of operating
systems to a variety of situations.

Module 3: Networks and Databases
3.1 Explain how a network consists of several autonomous systems

communicating through established protocols.
3.2 Explain how the Internet consists of multiple networks

connected through packet switching.
3.3 Describe how the Web is an example protocol used on the

Internet that displays web pages in a client-server model.
3.4 Explain how cybersecurity is an important concern for

networks and the software that is built on them.
3.5 Recognize fundamental knowledge of the role, structure, and

characteristics of database systems.
Module 4: Artificial Intelligence
4.1 Differentiate between the concepts of machine

reasoning/behavior and human reasoning/behavior.
4.2 Identify common vocabulary concerning artificial intelligence.
4.3 Identify challenges with artificial intelligence concerning

images and language processing.

3.2 Fundamentals of Programming
FOP is the second course in the program and is taught as a 16-
week fall course. FOP teaches fundamental programming
concepts in terms of programming as a discipline, but also
considering how teachers and students might use programming
as a tool to solve their own problems. The course is taught using
Scratch [36] and Python [33], and uses the free online textbook
“Python for Everybody” [25] from Runestone Interactive.

Table 2: FOP Outcomes

Course-Wide Outcomes
0.1 Explain the concepts of sequence, loops, parallelism, events,

conditionals, operators, variables, and lists within the context
of computer science.

0.2 Given an introductory programming vocabulary term, [write
an accurate definition; provide a non-computer example
illustrating the vocabulary; explain how the vocabulary is
present in a given real-world scenario].

0.3 Consider a block of code and identify its outcome.
0.4 Consider a provided scenario and a block of code that

attempts to solve the scenario. Identify whether the code will
accurately solve the scenario and, if not, how to fix the code.

0.5 Discuss basic elements of instruction regarding key concepts
of computer science in the context of a K-12 classroom.

Module 1: Programming with Scratch
1.1 Create and debug programs using various forms of

interaction, control statements, and functions
Module 2: Beginning Programming with Python
2.1 Create and debug basic programs using basic data structures,

control statements, and functions.
Module 3: Data Analysis with Python
3.1 Create and debug basic analysis programs using CSV and text-

based data files.

3.3 Teaching & Learning of Programming
TLP is the third course in the program and is taught as a 16- week
spring course. TLP focuses on pedagogy of programming and
supports participants becoming a reflective practitioner [15]
through journal entries and small group activities. The textbook
is “The Big Book of Computing Pedagogy” by the Raspberry Pi
Foundation [7] and course activities and learning outcomes are
applied cyclically to the 12 principles of computing pedagogy [23].

Table 3: TLP Outcomes

Course-Wide Outcomes
0.1 Identify programming fundamentals and discuss prerequisite

relationships.
0.2 Analyze programming language considerations for a

classroom.
0.3 Explain the program design process.
0.4 Identify aspects of quality code.
0.5 Recognize the presence/absences of quality elements and

suggest improvements.
0.6 Discuss teaching/learning beliefs related to programming

instruction.
0.7 Identify learning considerations.
0.8 Discuss supportive practices in general and in the context of a

specific scenario/classroom.
0.9 Apply programming-based considerations to instructional

design.

3.4 Methods of Computer Science
The fourth course in the program is Methods which is taught as
an 8-week summer course during the second year This class
focuses more broadly on the teaching and learning of computer
science rather than only programming. The first half of the class

SIGCSE 2025, Pittsburgh, PA, USA. Diesburg, Schafer, and Morrison

is broken down into exploring and analyzing materials focusing
on computer science as a K-12 discipline via standards [1, 34, 37],
methods for teaching computer science [2, 5, 9, 12, 17, 20–22, 28,
32, 38–41] , curriculum design [11, 16], and computer science
professionalism [15, 42]. The second half of the class is a major
group project to produce a course design document for a grade-
appropriate course that the participants will teach in their own
classrooms.

Table 4: Methods Outcomes

Course-Wide Outcomes
0.1 Use the national high school computer science standards,

analyze potential learning difficulties, and plan teaching for
students with different needs.

0.2 For a given course or unit, propose, appropriate student
outcomes, assessments, learning activities, and mechanisms
for providing feedback and grades to students.

0.3 Describe a variety of instructional outcomes included in
middle and high school computer science.

0.4 Describe a variety of methods in the teaching process,
including meaningful learning, collaborative learning, inquiry
learning, etc. as well as identify the CS instructional outcomes
for which each is useful.

0.5 Contribute to a repository of resources for teaching computer
science, including materials, lab assignments, class activities,
and assessments.

3.5 Data Structures and Algorithms
The final course in the program, DSA is taught as a 16-week fall
course. DSA covers topics from algorithms and data structures
that teachers may need to support more advanced student projects
or teach an AP Computer Science A [43] course. We use “Problem
Solving with Data Structures and Algorithms” from Runestone
Interactive [26], as well as readings from the textbook previously
used in FCCS.

Table 5: DSA Outcomes

Course-Wide Outcomes
0.1 Apply appropriate terminology when describing the

characteristics, advantages, and limitations of different data
structures such as array, stack, queue, tree, graph, dictionary,
and hash table.

0.2 Research a new data structure or algorithm not previously
covered in the course, using credible sources, to understand
its purpose and application. Summarize the algorithm’s key
components for peers/students.

Module 1: Object-Oriented Programming
1.1 Identify and explain the key concepts of object-oriented

programming, including classes, objects, methods, inheritance,
polymorphism, encapsulation, and abstraction.

1.2 Recognize and describe the purpose and structure of Python
classes and objects in a provided code snippet.

Module 2: Algorithm Analysis
2.1 Employ appropriate vocabulary to discuss algorithmic

efficiency, including terms like Big O notation, time
complexity, and space complexity.

2.2 Analyze code to determine its execution-time (big-oh
notation) and storage utilization.

Module 3: Linear Data Structures
3.1 Trace, identify and explain common "linear" data structures

constructed using "arrays" (i.e., contiguous block of memory)
and "linked nodes" as appropriate: stack, queue, and list.

Module 4: Recursion
4.1 Define recursion and identify the components of a recursive

function, including the base case and the recursive case.
4.2 Trace the execution of a recursive function, demonstrating

understanding by outlining the calls and return values step-by-
step.

Module 5: Applications
5.1 Trace, explain, and analyze common search/sort techniques

such as linear search, binary search, closed-address hashing.
5.2 Explain and analyze simple and advanced sorts such as bubble,

selection, insertion, merge, and quick sorts.

4 Mapping to Standards
Two of the ongoing discussions we have had when developing
these course outcomes are 1) why are we requiring this outcome
and 2) how does this outcome help prepare better teachers? To
guide these discussions, we elected to connect our program and
course outcomes to the most appropriate standards faced by
computer science teachers in our state – the CSTA K-12 Standards
for Students and the CS Standards for CS Teachers.

The CSTA K-12 Computer Science Standards [34] define the
skills and key CS knowledge that students should have at various
checkpoints along their K-12 journey. The standards are divided
into five grade bands. Levels 1A and 1B correspond to elementary
school (grades K-2 and 3-5 respectively), level 2 corresponds to
middle school (grades 6-8), and levels 3A and 3B correspond to
grades 9-12 with level 3A representing a typical student and 3B
intended for students pursuing specialty or elective CS courses.
Since our program addresses the state’s grades 5-12 Computer
Science Endorsement, we focused on making sure that our
outcomes considered the CSTA standards in levels 2 and 3A.

The CSTA Standards for CS Teachers establish robust
benchmarks for teachers who prepare students to meet CS
learning outcomes/standards [35]. Specifically, K-12 CS teachers
are asked to use these standards to reflect on their own areas of
growth, set professional goals, and identify targeted pathways to
meet these goals. Unlike the student standards, which explicitly
address where students should be at various points in their K-12
career, the teacher standards serve as guideposts or benchmarks
that teachers can use to guide their improvement as they gain
experience in teaching both in general and in the CS classroom.

4.1 CSTA 2 and 3A
As we considered the overall efficacy and coverage of our
program objectives, we began by mapping course objectives and
concepts to the K-12 Standards for students. Tables 6 and 7
address the CSTA 2 and CSTA 3A standards, respectively. For
each standard, we report whether the standard is “Met,”
“Progressing” or “Unmet” in our program and, as appropriate, in
which course the standards are addressed.

Curriculum for a Comprehensive Statewide In-Service CS Teacher Training Program SIGCSE 2025, Pittsburgh, PA, USA.

Table 6: Mapping to CSTA Grade Band 2 Standards
Concept Standard Status Class Covered
Computing
Systems

2-CS-01,02,03 Unmet -

Networks &
The Internet

2-NI-04,05 Met FCCS, FOP
2-NI-06 Progressing FCCS

Data &
Analysis

2-DA-07,08 Met FCCS, FOP
2-DA-09 Unmet -

Algorithms &
Programming

2-AP-10,11,12,
13,14,15,16,19

Met FOP, DSA

2-AP-17 Progressing FOP
2-AP-18 Unmet -

Impacts of
Computing

2-IC-
20,21,22,23

Met FCCS, TLP,
DSA

Table 7: Mapping to CSTA Grade Band 3A Standards

Concept Standard Status Class
Covered

Computing
Systems

3A-CS-01,02 Met FCCS
3A-CS-03 Unmet -

Networks &
The Internet

3A-NI-
04,05,06,07

Met FCCS

3A-NI-08 Progressing FCCS
Data &
Analysis

3A-DA-09,10 Meeting FCCS
3A-DA-12 Progressing FCCS
3A-DA-11 Unmet -

Algorithms &
Programming

3A-AP-
13,14,15,16,17,22

Meeting FOP, TLP, DSA

3A-AP-18,19 Progressing FOP
3A-AP-20,21,23 Unmet -

Impacts of
Computing

3A-IC-26,27,29,30 Meeting FCCS, FOP,
TLP, Methods

3A-IC-24,28 Progressing FCCS, TLP
3A-IC-25 Unmet -

As we have iteratively designed and improved our curriculum,

we have made continued efforts to understand how our program
aligns with these standards. It is important to note that saying this
does not mean that we have 100% alignment (as can be seen from
the tables above). We find that, at times, we must make thoughtful
tradeoffs in balancing two of our program principles: standards-
based content versus educator-based content. For example, our
Foundations of Programming course (heavily standards-based) is
designed to, as much as possible, model the pedagogical
techniques that students will learn in TLP (heavily educator-
based). Because of this, we must balance the content that we teach
and how it is taught.

In the tables above, the term “Progressing” means that we
cover some topics related to the standard, but our activities are
either evaluated lower in Bloom’s Taxonomy than the language
employed in the standard, or else, we meet part of, but not all, the
full standard. The “Unmet” standards fall into three categories:

Lack of physical computing/devices: Some standards rely on
physical systems such as robots. Our program courses are
designed to be taken online and asynchronous, which makes
incorporating devices challenging.

Lack of data science emphasis: Some standards require
large-scale gathering of data, cleaning and visualizing of data sets
and encompass data science. While data science concepts are an

important part of computer science, our program does not
currently emphasize this due to time constraints.

Lack of ongoing software development projects: Some
standards include the application of software development
models, timeline and collaborative tools, and robust testing.
Again, while important, our current program does not emphasize
these concepts.

Much like the CSTA Teacher Standards are designed to be
benchmarks used to guide teacher improvement, we have selected
which Student Standards we feel we can best prepare teachers to
meet in our program with its current structure. As the program
continues to evolve, we plan to reevaluate these standards and use
them as a guide for ongoing program improvement.

4.2 CSTA Teacher Standards
Table 8 shows how the full set of the CSTA Teacher Standards are
addressed in our program, whether in one class, multiple classes,
or program wide. In addition to addressing these over the lifetime
of the program, we engage students in self-reflection using these
standards as a significant class activity in the Methods course.
Students review each substandard and rate themselves on each of
the teacher standards as “not yet“, “proficient”, or “advanced”.
Students also self-identify their current experience based on
categories defined in the CSTA Roadmap for Professional
Learning “Self-Reflection Checklist” [44] and use this as a tool for
setting future goals.

Table 8: Mapping to CSTA Standards for CS Teachers

Concept Standard Class Covered
CS Knowledge &
Skills

1a TLP
1b,1c,1f FCCS
1d FOP
1d,1e DSA

Equity and Inclusion 2a,2b,2c, TLP
2a,2b,2c,2d,2e Methods

Professional Growth
and Identity

3c,3d,3e TLP
3a,3d,3e Methods
3b,3f Program-Wide

Instructional Design 4c,4d,4e TLP
4a,4b,4c,4d,4f,4g Methods

Classroom Practice 5b,5c TLP
5c Methods
5a,5d,5e,5f Program-Wide

5 Evaluation and Feedback
Formal evaluation of the program is ongoing as we gather
feedback from facilitators and participants. We have considerable
evidence that most participants find the courses both challenging
and rewarding and feel that the program will adequately prepare
them to teach computing in their school environment. A complete
quantitative analysis of these findings is beyond the scope of this
paper. However, we share some evidence that our curriculum is
making a positive impact by revisiting our three guiding
principles and sharing teacher quotes that support our beliefs that
these were meaningful places to start.

SIGCSE 2025, Pittsburgh, PA, USA. Diesburg, Schafer, and Morrison

Educator-based

 I enjoy the reflection writing and being able to demonstrate
and make connections between the reading and my classroom.

 The idea of the "imposter syndrome" and how to help students
feel more confident in computer science and all content areas.

 Backwards design is something I'm rolling with heavy!
 Prior to this course, I was able to explain how to do the coding

activities, but I couldn't explain why we were doing it that way
or why it was important.

 You present the content in many different modes: the
textbook, external videos, practice problems, and your videos.
We are really focusing on Universal Design for Learning
(UDL), and you are providing me with good examples of it.

 I liked having the list of resources on different CS Teaching
Methods. It will be great to refer back to this!

Standards-based

 Taking a deep dive into the standards helped clarify how to
structure a class.

 Looking closely at the standards to develop outcomes - using
UbD backward design - is something that will help me in my
course development.

 I think the emphasis on looking at, and considering, standards
is always a useful exercise. It makes me reflect on not just CS
but also my Social Studies class.

 Taking an inventory of where I am at on teaching the
standards. I feel confident that I can continue this self-
reflection strategy and update it as I grow in my teaching.

 I am now familiar with CS standards and at least have some
knowledge of the goals for computer science education.

 Thinking about course goals for myself, not relying on canned
curriculum

 I have really enjoyed looking at the CSTA teacher standards, I
have only briefly looked at them in the past so getting some
time to unpack them had some ideas going.

Peer/Cohort-based

 I thoroughly enjoy the CoP time and meeting with others who
are in the trenches.

 Keep using CoPs. It’s really reaffirming when we get together
in person to share how the course is going.

 I loved meeting as a group and being able to talk with others
and see what they do differently.

 I enjoy listening to the perspectives and input of the other
teachers. It lets me know I am not alone.

 Meeting together [at the CoPs] is good. Meeting via Zoom all
the time gets tedious.

 The hands-on activities at the CoP are the best part.
 The [online] small groups are great. I know this is hard for

some people to make the time to get together, but I REALLY
feel this is a valuable part of the process.

Finally, one of the current facilitators wrote the following about
teacher participation at a Methods CoP event (the fourth course
in the sequence) where small groups were working on their course
design documents:

“I wish they could look back and see themselves through
my eyes [to realize] how far they have progressed. It has
been outstanding to just hear their conversations.”

6 Reflections and Conclusions

 Our experiences with the iterative process of curriculum design,
implementation, and review have led us to focus on three main
lessons learned and worth sharing with others:

(1) Curriculum needs to be designed intentionally,
keeping in mind your organization’s big principles. We
needed to go into our program development knowing our big-
picture principles. When we’ve been faced with challenges, we
come back to the idea of how does the decision tie back to these 3
principles. When we have faced challenges in the design process,
we often have realized that we had been making decisions without
properly remembering our goals. Designing with clear
goals/principles at the program’s roots grounds the decision-
making process.

(2) Balancing face-to-face with asynchronous teaching is
important. Based on feedback and evaluation, we continually
receive comments that the CoPs help students learn material and
gain confidence. We believe that even small amounts of face-to-
face meetings can vastly improve the implementation and
understanding of certain types of curricula as well as build
community in a way that cannot be done purely online.

(3) As course adjustments are made, the big principles
need to be remembered. Being a reflective teacher means that, as
courses are taught, adjustments are made to better serve
participants. As content or delivery methods change based on
lessons learned and participant feedback, it becomes helpful, even
necessary, to build in time to revisit program principles, and as
necessary, objectives/standards documents, and confirm that
changes are in line with program outcomes.

In conclusion, training teachers to teach high-quality
computer science courses is challenging. But this paper
demonstrates that intentional design of such programs, focusing
on meaningful content (objectives) and delivery methods, as well
as on supporting participant needs through Communities of
Practice, can produce a high impact program. It is our hope that
sharing our model and lessons learned proves valuable for
organizations looking to create a comparable, comprehensive, CS
teacher training program.

ACKNOWLEDGMENTS
This work was funded by two NSF grants (1738784 and 2219497).
Thanks to Erin Chute, Philip East, Michelle Friend Michelle Meier,
and Corey Rogers for their assistance with our program and
ongoing collaboration as RPP partners.

Curriculum for a Comprehensive Statewide In-Service CS Teacher Training Program SIGCSE 2025, Pittsburgh, PA, USA.

REFERENCES
[1] Lisa Albers. Iowa Computer Science Standards - June 15, 2019.
[2] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris Miller.

2019. An Analysis of Using Many Small Programs in CS1. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education, 2019. ACM,
585–591.

[3] Ryan Bowen. Understanding by Design. Vanderbilt University Center for
Teaching. Retrieved June 18, 2024 from https://cft.vanderbilt.edu/guides-sub-
pages/understanding-by-design/

[4] J. Glenn Brookshear and Dennis Brylow. 2020. Computer science: an overview
(13th Edition). Pearson.

[5] Adam S. Carter and Christopher D. Hundhausen. 2011. A review of studio-
based learning in computer science. Journal of Computing Sciences in Colleges
27, 1 (2011), 105–111.

[6] Cynthia E. Coburn, William R. Penuel, and Kimberly E. Geil. 2013. Research-
practice partnerships: A strategy for leveraging research for educational
improvement in school districts. William T. Grant Foundation (2013). Retrieved
July 10, 2024 from https://eric.ed.gov/?id=ED568396

[7] Gemma Coleman. 2021. The big book of computing pedagogy. Raspberry Pi
Foundation, Cambridge, UK. Retrieved from
https://www.raspberrypi.org/hello-world/issues/the-big-book-of-computing-
pedagogy

[8] Sarah M. Diesburg and J. Ben Schafer. 2023. Scaling Up to a Statewide Network
for CS Teacher Preparation by Introducing AEA Community of Practice
Partnerships. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education, Volume 2, SIGCSE 2023, Toronto, ON, Canada,
March 15-18, 2023., 2023. 1397. https://doi.org/10.1145/3545947.3576341

[9] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving
parsons problems versus fixing and writing code. In Proceedings of the 17th
Koli Calling International Conference on Computing Education Research,
November 16, 2017. ACM, Koli Finland, 20–29.
https://doi.org/10.1145/3141880.3141895

[10] Cameron L. Fadjo, Ted Brown, and Leigh Ann DeLyser. 2013. A curriculum
model for preparing K-12 computer science teachers. In Proceedings of the
International Conference on Frontiers in Education: Computer Science and
Computer Engineering (FECS), 2013. The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp).

[11] Dan Garcia, Maria Camarena, Kevin Lin, and Jill Westerland. 2023. Equitable
Grading Best Practices. In Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 2 (SIGCSE 2023), March 06, 2023. Association
for Computing Machinery, New York, NY, USA, 1200–1201.
https://doi.org/10.1145/3545947.3569602

[12] Mark Guzdial. 2003. A media computation course for non-majors. In
Proceedings of the 8th annual conference on Innovation and technology in
computer science education, 2003. 104–108. Retrieved June 20, 2024 from
https://dl.acm.org/doi/abs/10.1145/961511.961542

[13] Helen H. Hu, Cecily Heiner, Thomas Gagne, and Carl Lyman. 2017. Building
a Statewide Computer Science Teacher Pipeline. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education, March 08,
2017. ACM, Seattle Washington USA, 291–296.
https://doi.org/10.1145/3017680.3017788

[14] Alark Joshi, Amit Jain, Ernie Covelli, Jyh-haw Yeh, and Tim Andersen. 2019.
A sustainable model for high-school teacher preparation in computer science.
In 2019 IEEE Frontiers in Education Conference (FIE), 2019.

[15] David A. Kolb. 2014. Experiential learning: Experience as the source of learning
and development. FT press.

[16] Jay McTighe and Grant Wiggins. 2012. Understanding by design framework.
Alexandria, VA: Association for Supervision and Curriculum Development
(2012). Retrieved June 20, 2024 from
https://www.sabes.org/sites/default/files/news/5_UbD_WhitePaper0312%5B1
%5D.pdf

[17] Alvaro E. Monge, Cameron L. Fadjo, Beth A. Quinn, and Lecia J. Barker. 2015.
EngageCSEdu: Engaging and Retaining CS1 and CS2 Students. ACM Inroads
6, 1 (February 2015), 6–11. https://doi.org/10.1145/2714569

[18] Lijun Ni, Mark Guzdial, Allison Elliott Tew, Briana Morrison, and Ria Galanos.
2011. Building a community to support HS CS teachers: the disciplinary
commons for computing educators. In Proceedings of the 42nd ACM technical
symposium on Computer science education, March 09, 2011. ACM, Dallas TX
USA, 553–558. https://doi.org/10.1145/1953163.1953319

[19] Gamze Ozogul, Mike Karlin, and Anne Ottenbreit-Leftwich. 2018. Preservice
teacher computer science preparation: A case study of an undergraduate
computer education licensure program. Journal of Technology and Teacher
Education 26, 3 (2018), 375–409.

[20] Leo Porter, Cynthia Bailey Lee, Beth Simon, Quintin Cutts, and Daniel
Zingaro. 2011. Experience report: a multi-classroom report on the value of
peer instruction. In Proceedings of the 16th annual joint conference on

Innovation and technology in computer science education, June 27, 2011. ACM,
Darmstadt Germany, 138–142. https://doi.org/10.1145/1999747.1999788

[21] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-institutional Study
of Peer Instruction in Introductory Computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, February 17, 2016.
ACM, Memphis Tennessee USA, 358–363.
https://doi.org/10.1145/2839509.2844642

[22] Rathika Rajaravivarma. 2005. A games-based approach for teaching the
introductory programming course. SIGCSE Bull. 37, 4 (December 2005), 98–
102. https://doi.org/10.1145/1113847.1113886

[23] James Robinson. 2020. How we teach computing. National Centre for
Computing Education. Retrieved June 19, 2024 from
https://blog.teachcomputing.org/how-we-teach-computing/

[24] Adam Rosenstein, Aishma Raghu, and Leo Porter. 2020. Identifying the
Prevalence of the Impostor Phenomenon Among Computer Science Students.
In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, February 26, 2020. ACM, Portland OR USA, 30–36.
https://doi.org/10.1145/3328778.3366815

[25] Runestone Academy. Python for Everybody - Interactive.
[26] Runestone Academy. Problem Solving with Algorithms and Data Structures 3rd

edition. Retrieved June 20, 2024 from
https://runestone.academy/ns/books/published/pythonds3/index.html?mode
=browsing

[27] J. Ben Schafer and J. Philip East. 2022. Creating a High Quality, High Impact
CS Teacher Prep Program. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education, February 22, 2022. ACM,
Providence RI USA, 599–605. https://doi.org/10.1145/3478431.3499338

[28] Kimberly Scott, Kimberly M. Sheridan, and Kevin Clark. 2015. Culturally
responsive computing. Learning, Media and Technology 40, 4 (2015), 412–436.

[29] Josh Tenenberg and Sally Fincher. 2007. Opening the door of the computer
science classroom: the disciplinary commons. SIGCSE Bull. 39, 1 (March 2007),
514–518. https://doi.org/10.1145/1227504.1227484

[30] Etienne Wenger. 1999. Communities of practice: Learning, meaning, and
identity. Cambridge university press.

[31] Aman Yadav, Cornelia Connolly, Marc Berges, Christos Chytas, Crystal
Franklin, Raquel Hijón-Neira, Victoria Macann, Lauren Margulieux, Anne
Ottenbreit-Leftwich, and Jayce R. Warner. 2022. A Review of International
Models of Computer Science Teacher Education. In Proceedings of the 2022
Working Group Reports on Innovation and Technology in Computer Science
Education, December 27, 2022. ACM, Dublin Ireland, 65–93.
https://doi.org/10.1145/3571785.3574123

[32] 2015. Pair Programming: Does It Really Work? | Agile Alliance. Retrieved June
20, 2024 from https://www.agilealliance.org/glossary/pair-programming/

[33] 2024. Welcome to Python.org. Python.org. Retrieved June 18, 2024 from
https://www.python.org/

[34] CSTA K–12 Standards. Retrieved June 18, 2024 from
https://csteachers.org/k12standards/

[35] CSTA Standards for CS Teachers. Retrieved June 18, 2024 from
https://csteachers.org/teacherstandards/

[36] Scratch - Imagine, Program, Share. Retrieved June 18, 2024 from
https://scratch.mit.edu/

[37] K–12 Computer Science Framework. k12cs.org. Retrieved June 20, 2024 from
http://k12cs.org

[38] Teaching Methods. Retrieved June 20, 2024 from
https://teach.com/what/teachers-know/teaching-methods/

[39] POGIL | Home. Retrieved June 20, 2024 from https://pogil.org/
[40] CS-POGIL | Home. CS-POGIL. Retrieved June 20, 2024 from

https://cspogil.org/Home
[41] How Can You Engage A Diverse Range of Girls in Technology? | National

Center for Women & Information Technology. Retrieved June 20, 2024 from
https://ncwit.org/resource/how-can-you-engage-diverse-range-girls-
computing/

[42] Guidance for Reflective Teachers. Computer Science Teachers Association.
Retrieved June 20, 2024 from https://csteachers.org/reflective-teachers/

[43] AP Computer Science A Standards Mapping for AP Computer Science
Principles* | CodeHS. Retrieved June 20, 2024 from
https://codehs.com/standards/framework/AP_CSA/course/400

[44] Roadmap for Professional Learning. Computer Science Teachers Association.
Retrieved June 26, 2024 from https://csteachers.org/roadmap-for-professional-
learning/

	Blank Page

